53 research outputs found

    Timely Long Tail Identification through Agent Based Monitoring and Analytics

    Get PDF
    The increasing complexity and scale of distributed systems has resulted in the manifestation of emergent behavior which substantially affects overall system performance. A significant emergent property is that of the "Long Tail", whereby a small proportion of task stragglers significantly impact job execution completion times. To mitigate such behavior, straggling tasks occurring within the system need to be accurately identified in a timely manner. However, current approaches focus on mitigation rather than identification, which typically identify stragglers too late in the execution lifecycle. This paper presents a method and tool to identify Long Tail behavior within distributed systems in a timely manner, through a combination of online and offline analytics. This is achieved through historical analysis to profile and model task execution patterns, which then inform online analytic agents that monitor task execution at runtime. Furthermore, we provide an empirical analysis of two large-scale production Cloud data enters that demonstrate the challenge of data skew within modern distributed systems, this analysis shows that approximately 5% of task stragglers caused by data skew impact 50% of the total jobs for batch processes. Our results demonstrate that our approach is capable of identifying task stragglers less than 11% into their execution lifecycle with 98% accuracy, signifying significant improvement over current state-of-the-art practice and enables far more effective mitigation strategies in large-scale distributed systems worldwide

    Reducing Late-Timing Failure at Scale: Straggler Root-Cause Analysis in Cloud Datacenters

    Get PDF
    Task stragglers hinder effective parallel job execution in Cloud datacenters, resulting in late-timing failures due to the violation of specified timing constraints. Stragglertolerant methods such as speculative execution provide limited effectiveness due to (i) lack of precise straggler root-cause knowledge and (ii) straggler identification occurring too late within a job lifecycle. This paper proposes a method to ascertain underlying straggler root-causes by analyzing key parameters within large-scale distributed systems, and to determine the correlation between straggler occurrence and factors including resource contention, task concurrency, and server failures. Our preliminary study of a production Cloud datacenter indicates that the dominate straggler root-cause is resultant of high temporal resource contention. The result can assist in enhancing straggler prediction and mitigation for tolerating late-timing failures within large-scale distributed systems

    An Approach for Modeling and Ranking Node-level Stragglers in Cloud Datacenters

    Get PDF
    The ability of servers to effectively execute tasks within Cloud datacenters varies due to heterogeneous CPU and memory capacities, resource contention situations, network configurations and operational age. Unexpectedly slow server nodes (node-level stragglers) result in assigned tasks becoming task-level stragglers, which dramatically impede parallel job execution. However, it is currently unknown how slow nodes directly correlate to task straggler manifestation. To address this knowledge gap, we propose a method for node performance modeling and ranking in Cloud datacenters based on analyzing parallel job execution tracelog data. By using a production Cloud system as a case study, we demonstrate how node execution performance is driven by temporal changes in node operation as opposed to node hardware capacity. Different sample sets have been filtered in order to evaluate the generality of our framework, and the analytic results demonstrate that node abilities of executing parallel tasks tend to follow a 3-parameter-loglogistic distribution. Further statistical attribute values such as confidence interval, quantile value, extreme case possibility, etc. can also be used for ranking and identifying potential straggler nodes within the cluster. We exploit a graph-based algorithm for partitioning server nodes into five levels, with 0.83% of node-level stragglers identified. Our work lays the foundation towards enhancing scheduling algorithms by avoiding slow nodes, reducing task straggler occurrence, and improving parallel job performance

    Multi-tenancy in cloud computing

    Get PDF
    As Cloud Computing becomes the trend of information technology computational model, the Cloud security is becoming a major issue in adopting the Cloud where security is considered one of the most critical concerns for the large customers of Cloud (i.e. governments and enterprises). Such valid concern is mainly driven by the Multi-Tenancy situation which refers to resource sharing in Cloud Computing and its associated risks where confidentiality and/or integrity could be violated. As a result, security concerns may harness the advancement of Cloud Computing in the market. So, in order to propose effective security solutions and strategies a good knowledge of the current Cloud implementations and practices, especially the public Clouds, must be understood by professionals. Such understanding is needed in order to recognize attack vectors and attack surfaces. In this paper we will propose an attack model based on a threat model designed to take advantage of Multi-Tenancy situation only. Before that, a clear understanding of Multi-Tenancy, its origin and its benefits will be demonstrated. Also, a novel way on how to approach Multi-Tenancy will be illustrated. Finally, we will try to sense any suspicious behavior that may indicate to a possible attack where we will try to recognize the proposed attack model empirically from Google trace logs. Google trace logs are a 29-day worth of data released by Google. The data set was utilized in reliability and power consumption studies, but not been utilized in any security study to the extent of our knowledge

    Straggler Root-Cause and Impact Analysis for Massive-scale Virtualized Cloud Datacenters

    Get PDF
    Increased complexity and scale of virtualized distributed systems has resulted in the manifestation of emergent phenomena substantially affecting overall system performance. This phenomena is known as “Long Tail”, whereby a small proportion of task stragglers significantly impede job completion time. While work focuses on straggler detection and mitigation, there is limited work that empirically studies straggler root-cause and quantifies its impact upon system operation. Such analysis is critical to ascertain in-depth knowledge of straggler occurrence for focusing developmental and research efforts towards solving the Long Tail challenge. This paper provides an empirical analysis of straggler root-cause within virtualized Cloud datacenters; we analyze two large-scale production systems to quantify the frequency and impact stragglers impose, and propose a method for conducting root-cause analysis. Results demonstrate approximately 5% of task stragglers impact 50% of total jobs for batch processes, and 53% of stragglers occur due to high server resource utilization. We leverage these findings to propose a method for extreme straggler detection through a combination of offline execution patterns modeling and online analytic agents to monitor tasks at runtime. Experiments show the approach is capable of detecting stragglers less than 11% into their execution lifecycle with 95% accuracy for short duration jobs

    Adaptive Speculation for Efficient Internetware Application Execution in Clouds

    Get PDF
    Modern Cloud computing systems are massive in scale, featuring environments that can execute highly dynamic Internetware applications with huge numbers of interacting tasks. This has led to a substantial challenge the straggler problem, whereby a small subset of slow tasks significantly impede parallel job completion. This problem results in longer service responses, degraded system performance, and late timing failures that can easily threaten Quality of Service (QoS) compliance. Speculative execution (or speculation) is the prominent method deployed in Clouds to tolerate stragglers by creating task replicas at runtime. The method detects stragglers by specifying a predefined threshold to calculate the difference between individual tasks and the average task progression within a job. However, such a static threshold debilitates speculation effectiveness as it fails to capture the intrinsic diversity of timing constraints in Internetware applications, as well as dynamic environmental factors such as resource utilization. By considering such characteristics, different levels of strictness for replica creation can be imposed to adaptively achieve specified levels of QoS for different applications. In this paper we present an algorithm to improve the execution efficiency of Internetware applications by dynamically calculating the straggler threshold, considering key parameters including job QoS timing constraints, task execution progress, and optimal system resource utilization. We implement this dynamic straggler threshold into the YARN architecture to evaluate it’s effectiveness against existing state-of-the-art solutions. Results demonstrate that the proposed approach is capable of reducing parallel job response times by up to 20% compared to the static threshold, as well as a higher speculation success rate, achieving up to 66.67% against 16.67% in comparison to the static method

    Holistic Virtual Machine Scheduling in Cloud Datacenters towards Minimizing Total Energy

    Get PDF
    Energy consumed by Cloud datacenters has dramatically increased, driven by rapid uptake of applications and services globally provisioned through virtualization. By applying energy-aware virtual machine scheduling, Cloud providers are able to achieve enhanced energy efficiency and reduced operation cost. Energy consumption of datacenters consists of computing energy and cooling energy. However, due to the complexity of energy and thermal modeling of realistic Cloud datacenter operation, traditional approaches are unable to provide a comprehensive in-depth solution for virtual machine scheduling which encompasses both computing and cooling energy. This paper addresses this challenge by presenting an elaborate thermal model that analyzes the temperature distribution of airflow and server CPU. We propose GRANITE – a holistic virtual machine scheduling algorithm capable of minimizing total datacenter energy consumption. The algorithm is evaluated against other existing workload scheduling algorithms MaxUtil, TASA, IQR and Random using real Cloud workload characteristics extracted from Google datacenter tracelog. Results demonstrate that GRANITE consumes 4.3% - 43.6% less total energy in comparison to the state-of-the-art, and reduces the probability of critical temperature violation by 99.2% with 0.17% SLA violation rate as the performance penalty

    Tails in the cloud: a survey and taxonomy of straggler management within large-scale cloud data centres

    Get PDF
    Cloud computing systems are splitting compute- and data-intensive jobs into smaller tasks to execute them in a parallel manner using clusters to improve execution time. However, such systems at increasing scale are exposed to stragglers, whereby abnormally slow running tasks executing within a job substantially affect job performance completion. Such stragglers are a direct threat towards attaining fast execution of data-intensive jobs within cloud computing. Researchers have proposed an assortment of different mechanisms, frameworks, and management techniques to detect and mitigate stragglers both proactively and reactively. In this paper, we present a comprehensive review of straggler management techniques within large-scale cloud data centres. We provide a detailed taxonomy of straggler causes, as well as proposed management and mitigation techniques based on straggler characteristics and properties. From this systematic review, we outline several outstanding challenges and potential directions of possible future work for straggler research

    START: Straggler Prediction and Mitigation for Cloud Computing Environments using Encoder LSTM Networks

    Get PDF
    A common performance problem in large-scale cloud systems is dealing with straggler tasks that are slow running instances which increase the overall response time. Such tasks impact the system's QoS and the SLA. There is a need for automatic straggler detection and mitigation mechanisms that execute jobs without violating the SLA. Prior work typically builds reactive models that focus first on detection and then mitigation of straggler tasks, which leads to delays. Other works use prediction based proactive mechanisms, but ignore volatile task characteristics. We propose a Straggler Prediction and Mitigation Technique (START) that is able to predict which tasks might be stragglers and dynamically adapt scheduling to achieve lower response times. START analyzes all tasks and hosts based on compute and network resource consumption using an Encoder LSTM network to predict and mitigate expected straggler tasks. This reduces the SLA violation rate and execution time without compromising QoS. Specifically, we use the CloudSim toolkit to simulate START and compare it with IGRU-SD, SGC, Dolly, GRASS, NearestFit and Wrangler in terms of QoS parameters. Experiments show that START reduces execution time, resource contention, energy and SLA violations by 13%, 11%, 16%, 19%, compared to the state-of-the-art

    Fault-Tolerant Dynamic Deduplication for Utility Computing

    Get PDF
    Utility computing is an increasingly important paradigm, whereby computing resources are provided on-demand as utilities. An important component of utility computing is storage, data volumes are growing rapidly, and mechanisms to mitigate this growth need to be developed. Data deduplication is a promising technique for drastically reducing the amount of data stored in such system systems, however, current approachs are static in nature, using an amount of redundancy fixed at design time. This is inappropriate for truly dynamic modern systems. We propose a real-time adaptive deduplication system for Cloud and Utility computing that monitors in real-time for changing system, user, and environmental behaviour in order to fulfill a balance between changing storage efficiency, performance, and fault tolerance requirements. We evaluate our system through simulation, with experimental results showing that our system is both efficient and sclable. We also perform experimentation to evaluate the fault tolerance of the system by measuring Mean Time to Repair (MTTR), and using these values to calculate availability of the system. The results show that higher replication levels result in higher system availability, however, the number of files in the system also effects recovery time. We show that the tradeoff between replication levels and recovery time when the system overloads needs further investigation
    corecore